“Magic Angle Precession”

نویسنده

  • Bernd Binder
چکیده

An advanced and exact geometric description of nonlinear precession dynamics modeling very accurately natural and artificial couplings showing Lorentz symmetry is derived. In the linear description it is usually ignored that the geometric phase of relativistic motion couples back to the orbital motion providing for a non-linear recursive precession dynamics. The high coupling strength in the nonlinear case is found to be a gravitomagnetic charge proportional to the precession angle and angular velocity generated by geometric phases, which are induced by highspeed relativistic rotations and are relevant to propulsion technologies but also to basic interactions. In the quantum range some magic precession angles indicating strong coupling in a phase-locked chaotic system are identified, emerging from a discrete time dynamical system known as the cosine map showing bifurcations at special precession angles relevant to heavy nuclei stability. The “Magic Angle Precession” (MAP) dynamics can be simulated and visualized by cones rolling in or on each other, where the apex and precession angles are indexed by spin, charge or precession quantum numbers, and corresponding magic angles. The most extreme relativistic warping and twisting effect is given by the Dirac spinor half spin constellation with “Hyperdiamond” MAP, which resembles quark confinement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magic Angle Chaotic Precession

This paper explores the properties of a precessing rotor or a coupled system of precessing rotors (gyroscopes), where a special chaotic behavior in the precession angle can be found if the change of rotor angular velocity is linearly coupled by (an)holonomy to the precession angular velocity and angle. The linear coupling provides for rolling cone paths and allows spinning up and controlling th...

متن کامل

Magic Angle Chaotic Precession (Recurrent Holonomy)

This paper explores the properties of a precessing rotor or a coupled system of precessing rotors (gyroscopes), where a special chaotic behavior in the precession angle can be found if the change of rotor angular velocity is linearly coupled by (an)holonomy to the precession angular velocity and angle. The linear coupling provides for rolling cone paths and allows spinning up and controlling th...

متن کامل

Geodesic Holonomy Attractor between Surfaces of Different Curvature Signs relevant to Spin Transport

We will consider nonlinear holonomy effects -especially the spin dissipation dynamicsarising in the transport of a linear rotator between metric spaces with different curvature (positive, zero, negative). The extra 3D spin vector current induced by curvature or metric distortion provides for a holonomic attractor called ”Magic Angle Precession” (MAP). Limitations and instabilities of the spin c...

متن کامل

Thomas precession angle and spinor algebra

We present an alternative derivation of the Thamos precession angle. Using Pauli matrices, the finite precession angle can be computed exactly. We also discuss a new physical interpretation of the precession angle. Email address: [email protected] Email address: [email protected]

متن کامل

Nuclear magnetic resonance polarization and coherence echoes in static and rotating solids

The mechanisms of defocusing and refocusing of spin order in extended dipolar coupled nuclear spin systems are investigated by experiments on static and on rotating solids. It is demonstrated that polarization or coherence echoes are possible also under magic-angle sample spinning. The dipolar interactions, averaged by the spinning, are recovered by rotor-synchronized multiple-pulse sequences. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007